Contents
Images
Upload your image
DSS Images Other Images
Related articles
Habitability of Known Exoplanetary Systems Based on Measured Stellar Properties Habitable planets are likely to be broadly Earth-like in composition,mass, and size. Masses are likely to be within a factor of a few of theEarth's mass. Currently, we do not have sufficiently sensitivetechniques to detect Earth-mass planets, except in rare circumstances.It is thus necessary to model the known exoplanetary systems. Inparticular, we need to establish whether Earth-mass planets could bepresent in the classical habitable zone (HZ) or whether the giantplanets that we know to be present would have gravitationally ejectedEarth-mass planets or prevented their formation. We have answered thisquestion by applying computer models to the 152 exoplanetary systemsknown by 2006 April 18 that are sufficiently well characterized for ouranalysis. For systems in which there is a giant planet, inside the HZ,which must have arrived there by migration, there are two cases: (1)where the migration of the giant planet across the HZ has not ruled outthe existence of Earth-mass planets in the HZ; and (2) where themigration has ruled out existence. For each case, we have determined theproportion of the systems that could contain habitable Earth-massplanets today, and the proportion for which this has been the case forat least the past 1000 Myr (excluding any early heavy bombardment). Forcase 1 we get 60% and 50%, respectively, and for case 2 we get 7% and7%, respectively.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | いっかくじゅう座 |
Right ascension: | 06h02m25.64s |
Declination: | -06°47'25.2" |
Apparent magnitude: | 9.111 |
Proper motion RA: | -15.6 |
Proper motion Dec: | 1.7 |
B-T magnitude: | 9.665 |
V-T magnitude: | 9.157 |
Catalogs and designations:
|