Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

19 Psc



Upload your image

DSS Images   Other Images

Related articles

Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas
We build an accurate data base of 5200 HCN and HNC rotation-vibrationenergy levels, determined from existing laboratory data. 20000 energylevels in the Harris et al. linelist are assigned approximate quantumnumbers. These assignments, lab-determined energy levels and Harris etal. energy levels are incorporated in to a new energy level list. A newlinelist is presented, in which frequencies are computed using thelab-determined energy levels where available, and the ab initio energylevels otherwise.The new linelist is then used to compute new model atmospheres andsynthetic spectra for the carbon star WZ Cas. This results in better fitto the spectrum of WZ Cas in which the absorption feature at 3.56μmis reproduced to a higher degree of accuracy than has previously beenpossible. We improve the reproduction of HCN absorption features byreducing the abundance of Si to [Si/H]=-0.5dex, however, the strengthsof the Δv= 2 CS band heads are overpredicted.

Very Large Telescope three micron spectra of dust-enshrouded red giants in the Large Magellanic Cloud
We present ESO/VLT spectra in the 2.9-4.1 μm range for a large sampleof infrared stars in the Large Magellanic Cloud (LMC), selected on thebasis of MSX and 2MASS colours to be extremely dust-enshrouded AGB starcandidates. Out of 30 targets, 28 are positively identified as carbonstars, significantly adding to the known population of opticallyinvisible carbon stars in the LMC. We also present spectra for sixIR-bright stars in or near three clusters in the LMC, identifying fourof them as carbon stars and two as oxygen-rich supergiants. We analysethe molecular bands of C2H2 at 3.1 and 3.8 μm, HCN at 3.57 μm, andsharp absorption features in the 3.70-3.78 μm region that weattribute to C2H2. There is evidence for a generally high abundance ofC2H2 in LMC carbon stars, suggestive of high carbon-to-oxygen abundanceratios at the low metallicity in the LMC. The low initial metallicity isalso likely to have resulted in less abundant HCN and CS. The sample ofIR carbon stars exhibits a range in C2H2:HCN abundance ratio. We do notfind strong correlations between the properties of the molecularatmosphere and circumstellar dust envelope, but the observed differencesin the strengths and shapes of the absorption bands can be explained bydifferences in excitation temperature. High mass-loss rates and strongpulsation would then be seen to be associated with a large scale heightof the molecular atmosphere.

Infrared photometry and evolution of mass-losing AGB stars. I. Carbon stars revisited
As part of a reanalysis of galactic Asymptotic Giant Branch (AGB) starsat infrared (IR) wavelengths, we discuss a sample (357) of carbon starsfor which mass loss rates, near-IR photometry and distance estimatesexist. For 252 sources we collected mid-IR fluxes from the MSX (6C) andthe ISO-SWS catalogues. Most stars have spectral energy distributions upto 21 μm, and some (1/3) up to 45 μm. This wide wavelengthcoverage allows us to obtain reliable bolometric magnitudes. Theproperties of our sample are discussed with emphasis on ~70 stars withastrometric distances. We show that mid-IR fluxes are crucial toestimate the magnitude of stars with dusty envelopes. We construct HRdiagrams and show that the luminosities agree fairly well with modelpredictions based on the Schwarzschild's criterion, contrary to what iswidely argued in the literature. A problem with the brightness of Cstars does not appear to exist. From the relative number of Mira andSemiregular C-variables, we argue that the switch between these classesis unlikely to be connected to thermal pulses. The relevance of the twopopulations varies with the evolution, with Miras dominating the finalstages. We also analyze mass loss rates, which increase for increasingluminosity, but with a spread that probably results from a dependence ona number of parameters (like e.g. different stellar masses and differentmechanisms powering stellar winds). Instead, mass loss rates are wellmonitored by IR colours, especially if extended to 20 μm and beyond,where AGB envelopes behave like black bodies. From these colours theevolutionary status of various classes of C stars is discussed.

Forty Years of Spectroscopic Stellar Astrophysics in Japan
The development of Japanese spectroscopic stellar astrophysics in therecent 40 years is reviewed from an observational point of view. In thisarticle, the research activities are provisionally divided into fourfields: hot stars, hot emission-line (Be) stars, cool stars, and otherstars. Historical developments of the observational facilities atOkayama Astrophysical Observatory (spectrographs and detectors) are alsosummarized in connection with the progress in scientific researchactivities.

Lunar occultations in the near infrared: achievements and new challenges
A brief review of the lunar occultation program in the near infrared forhigh angular resolution study of bright IR sources carried out at PRL inthe last decade is presented. The development of the two channel Fast IRphotometer is described. Major results pertaining to circumstellar duststructures surrounding occulted objects like IRC+10216 and WR104 areoutlined. The challenges for the future in observing lunar occultationsin the L band and in the use of IR arrays for occultation work arediscussed.

First results from the ESO VLTI calibrators program
The ESO Very Large Telescope Interferometer (VLTI) is one of the leadinginterferometric facilities. It is equipped with several 8.2 and 1.8 mtelescopes, a large number of baselines up to 200 m, and with severalsubsystems designed to enable high quality measurements and to improvesignificantly the limits of sensitivities currently available tolong-baseline interferometry. The full scientific potential of the VLTIcan be exploited only if a consistent set of good quality calibrators isavailable. For this, a large number of observations of potentialcalibrators have been obtained during the commissioning phase of theVLTI. These data are publicly available. We briefly describe theinterferometer, the VINCI instrument used for the observations, the dataflow from acquisition to processed results, and we present and commenton the volume of observations gathered and scrutinized. The result is alist of 191 calibrator candidates, for which a total of 12 066observations can be deemed of satisfactory quality. We present a generalstatistical analysis of this sample, using as a starting point theangular diameters previously available in the literature. We derive thegeneral characteristics of the VLTI transfer function, and its trendwith time in the period 2001 through mid-2004. A second paper will bedevoted to a detailed investigation of a selected sample, aimed atestablishing a VLTI-based homogeneous system of calibrators.

Three-micron spectra of AGB stars and supergiants in nearby galaxies
The dependence of stellar molecular bands on the metallicity is studiedusing infrared L-band spectra of AGB stars (both carbon-rich andoxygen-rich) and M-type supergiants in the Large and Small MagellanicClouds (LMC and SMC) and in the Sagittarius Dwarf Spheroidal Galaxy. Thespectra cover SiO bands for oxygen-rich stars, and acetylene (C2H2), CHand HCN bands for carbon-rich AGB stars. The equivalent width ofacetylene is found to be high even at low metallicity. The high C2H2abundance can be explained with a high carbon-to-oxygen (C/O) ratio forlower metallicity carbon stars. In contrast, the HCN equivalent width islow: fewer than half of the extra-galactic carbon stars show the 3.5μm HCN band, and only a few LMC stars show high HCN equivalent width.HCN abundances are limited by both nitrogen and carbon elementalabundances. The amount of synthesized nitrogen depends on the initialmass, and stars with high luminosity (i.e. high initial mass) could havea high HCN abundance. CH bands are found in both the extra-galactic andGalactic carbon stars. One SMC post-AGB star, SMC-S2, shows the 3.3μm PAH band. This first detection of a PAH band from an SMC post-AGBstar confirms PAHs can form in these low-metallicity stars. None of theoxygen-rich LMC stars show SiO bands, except one possible detection in alow quality spectrum. The limits on the equivalent widths of the SiObands are below the expectation of up to 30 Å for LMC metallicity.Several possible explanations are discussed, mostly based on the effectof pulsation and circumstellar dust. The observations imply that LMC andSMC carbon stars could reach mass-loss rates as high as their Galacticcounterparts, because there are more carbon atoms available and morecarbonaceous dust can be formed. On the other hand, the lack of SiOsuggests less dust and lower mass-loss rates in low-metallicityoxygen-rich stars. The effect on the ISM dust enrichment is discussed.

Dust cloud formation in stellar environments. II. Two-dimensional models for structure formation around AGB stars
This paper reports on computational evidence for the formation ofcloud-like dust structures around C-rich AGB stars. This spatio-temporalstructure formation process is caused by a radiative/thermal instabilityof dust-forming gases as identified by Woitke et al. (2000, A&A,358, 665). Our 2D (axisymmetric) models combine a time-dependentdescription of the dust formation process according to Gail &Sedlmayr (1988, A&A, 206, 153) with detailed, frequency-dependentcontinuum radiative transfer by means of a Monte Carlo method (Niccoliniet al. 2003, A&A, 399, 703) in an otherwise static medium (v = 0).These models show that the formation of dust behind already condensedregions, which shield the stellar radiation field, is strongly favoured.In the shadow of these clouds the temperature decreases by severalhundred Kelvin, which triggers the subsequent formation of dust andensures its thermal stability. Considering an initially dust-free gaswith small density inhomogeneities, we find that finger-like duststructures develop which are cooler than the surroundings and pointtowards the centre of the radiant emission, similar to the“cometary knots” observed in planetary nebulae and starformation regions. Compared to a spherical symmetric reference model,the clumpy dust distribution has little effect on the spectral energydistribution, but dominates the optical appearance in near IRmonochromatic images.

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

The mass loss of C-rich giants
The mass loss rates, expansion velocities and dust-to-gas density ratiosfrom millimetric observations of 119 carbon-rich giants are compared, asfunctions of stellar parameters, to the predictions of recenthydrodynamical models. Distances and luminosities previously estimatedfrom HIPPARCOS data, masses from pulsations and C/O abundance ratiosfrom spectroscopy, and effective temperatures from a new homogeneousscale, are used. Predicted and observed mass loss rates agree fairlywell, as functions of effective temperature. The signature of the massrange M≤4 Mȯ of most carbon-rich AGB stars is seenas a flat portion in the diagram of mass loss rate vs. effectivetemperature. It is flanked by two regions of mass loss rates increasingwith decreasing effective temperature at nearly constant stellar mass.Four stars with detached shells, i.e. episodic strong mass loss, andfive cool infrared carbon-rich stars with optically-thick dust shells,have mass loss rates much larger than predicted values. The latter(including CW Leo) could be stars of smaller masses (M≃ 1.5-2.5Mȯ) while M≃ 4 Mȯ is indicated formost of the coolest objects. Among the carbon stars with detachedshells, R Scl returned to a predicted level (16 times lower) accordingto recent measurements of the central source. The observed expansionvelocities are in agreement with the predicted velocities at infinity ina diagram of velocities vs. effective temperature, provided the carbonto oxygen abundance ratio is 1≤ɛ C/ɛO≤2, i.e. the range deduced from spectra and modelatmospheres of those cool variables. Five stars with detached shellsdisplay expansion velocities about twice that predicted at theireffective temperature. Miras and non-Miras do populate the same locus inboth diagrams at the present accuracy. The predicted dust-to-gas densityratios are however about 2.2 times smaller than the values estimatedfrom observations. Recent drift models can contribute to minimize thediscrepancy since they include more dust. Simple approximate formulaeare proposed.This research has made use of the Simbad database operated at CDS.Partially based on data from the ESA HIPPARCOS astrometry satellite.Table 3 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/429/235

Evidence of asymmetric structure in the atmosphere of Mira variable U Orionis from lunar occultation observations in the near-infrared
We present the infrared angular diameter of Mira variable U Ori,obtained from lunar occultation observations at 2.2 μm. The uniformdisc (UD) angular diameter is determined to be 11.9 +/- 0.3 mas atvariability phase 0.28. The source brightness profile derived from amodel-independent analysis shows an asymmetric spatial structure. Thedispersion in UD angular diameter measurements in comparison with othersimilar measurements at the same phase in the near-infrared can beexplained by a spatial asymmetry of the source, being elongated in thedirection northeast - southwest, at position angle of 50°-70°.Several corollary evidences for the spatial asymmetry of the source arepresented.

A search for debris discs around stars with giant planets
Eight nearby stars with known giant planets have been searched forthermal emission in the submillimetre arising from dust debris. The nullresults imply quantities of dust typically less than 0.02 Earth massesper star. Conversely, literature data for 20 Sun-like stars with debrisdiscs show that <= 5 per cent have gas giants inside a fewastronomical units - but the dust distribution suggests that nearly allhave more distant planets. The lack of overlap in these systems - i.e.few stars possess both inner planets and a disc - indicates that thesephenomena either are not connected or are mutually exclusive. Comparisonwith an evolutionary model shows that debris masses are predicted to below by the stellar ages of 2-8 Gyr (unless the colliding parent bodiesare quite distant, located beyond 100-200 au), but it remains to beexplained why stars that do have debris should preferentially only havedistant planets. A simple idea is proposed that could produce theselargely different systems, invoking a difference in the primordial discmass. Large masses promote fast gas giant growth and inwards migration,whereas small masses imply slow evolution, low-mass gas giants andoutwards migration that increases the collision rate of Kuiper Belt-likeobjects. This explanation neglects other sources of diversity betweendiscs (such as density and planetesimal composition and orbits), but itdoes have the merit of matching the observational results.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Dynamic model atmospheres of AGB stars. IV. A comparison of synthetic carbon star spectra with observations
We have calculated synthetic opacity sampling spectra for carbon-richAsymptotic Giant Branch (AGB) stars based on dynamic model atmosphereswhich couple time-dependent dynamics and frequency-dependent radiativetransfer, as presented in the third paper of this series. We include themolecules CO, CH, CN, C2, CS, HCN, C2H2and C3 in our calculations, both when computing theatmospheric structures, and the synthetic spectra. A comparison of thesynthetic spectra with various observed colours and spectra in thewavelength range between 0.5 and 25 μm,of TX Psc, WZ Cas, V460 Cyg, TLyr and S Cep is presented. We obtain good agreement betweenobservations gathered at different phases and synthetic spectra of onesingle hydrodynamical model for each star in the wavelength regionbetween 0.5 and 5 μm. At longer wavelengths our models showing massloss offer a first self-consistent qualitative explanation of why astrong feature around 14 μm, which is predicted by all hydrostaticmodels as well as dynamical models showing no mass loss, is missing inobserved AGB carbon star spectra.

The identification of HCN and HNC in carbon stars: model atmospheres, synthetic spectra and fits to observations in the 2.7-4.0 μm region
Model carbon star atmospheres and synthetic spectra have been calculatedusing the recent HCN/HNC vibration rotation line list of Harris et al.The calculations are repeated using only HCN lines and show that HNC hasa significant effect upon the temperature, density and optical depth ofa stellar atmosphere.We fit synthetic spectra in the 2.7-4.0 μm region to observed ISOspectra of the carbon stars WZ Cas and TX Psc obtained by Aoki et al.These fits allow us to identify absorption by HNC in the spectrum of WZCas at 2.8-2.9 μm, and to determine new independent estimates ofeffective temperature and log (NC/NO). Thefindings reported here indicate that absorption by both HCN and HNC isneeded to fully explain the observed stellar spectra and represent thefirst identification of HNC in a star. Q-branch absorption by the HCNΔv2= 1, Δv3= 1 andΔv1= 1, Δv2=-1 bands at 3.55 and 3.86μm, respectively, is identified in the spectrum of WZ Cas.

Infrared investigation from earth and space on the evolutionary state of a sample of LPV
We selected a sample of highly reddened AGB stars among the sourcesobserved with the SWS instrument on the ISO satellite. These SWS dataallow us to compute the source's photometry in the mid-IR filters of thecamera TIRCAM at the TIRGO telescope. Our photometric data, supplementedwith other measurements taken from the literature, permit to select thecarbon-rich sources in the sample. For these stars, a linear relationholds between dust mass loss and the color index [8.8]-[12.5]. One maythen, from photometric data alone, evaluate the total mass loss (forwhich we used the estimate of \citet{loup}, based on radio data). Theoxygen-rich sources, on the other hand, are distributed in two branches,of which the upper one appears superimposed with carbon stars; the starsin this group have both high luminosity and high wind velocity andtherefore higher masses. Finally S stars lie between the carbon-starbranch and the low-mass oxygen-rich stars, in agreement with theirintermediate evolutionary status.

New Laboratory Spectra of Isolated β-SiC Nanoparticles: Comparison with Spectra Taken by the Infrared Space Observatory
We present new laboratory infrared spectra of matrix-isolated β-SiCnanoparticles, which perfectly match the band profile of the 11+ μmfeature observed in carbon stars. The new laboratory spectra differ inthe shape of the band profile from former measurements of SiCnanoparticles thanks to the matrix-isolation technique which allows toobtain spectra of nonagglomerated particles. The final spectra arecorrected for the influence of the surrounding medium (argon-matrix) bya computational technique proposed by Papoular et al. (1998).Furthermore, we study the influence of nitrogen incorporation into theSiC lattice, which introduces a strong near-infrared absorption owing tosurface-plasmon excitation (Mutschke et al. 1999). Our laboratoryspectra are compared with Infrared Space Observatory observations ofseveral carbon stars showing an 11 μm feature either in emission orin absorption. We discuss the implications of the new laboratory resultsfor the interpretation of the spectra of carbon stars.Based on observations with ISO, an ESA project with instruments fundedby ESA Member States (especially the PI countries: France, Germany, theNetherlands, and the UK) and with the participation of ISAS and NASA.The SWS is a joint project of SRON and MPE.

Infrared Colors and Variability of Evolved Stars from COBE DIRBE Data
For a complete 12 μm flux-limited sample of 207 IRAS sources(F12>=150 Jy, |b|>=5deg), the majority ofwhich are AGB stars (~87%), we have extracted light curves in seveninfrared bands between 1.25 and 60 μm using the database of theDiffuse Infrared Background Experiment (DIRBE) instrument on the CosmicBackground Explorer (COBE) satellite. Using previous infrared surveys,we filtered these light curves to remove data points affected by nearbycompanions and obtained time-averaged flux densities and infraredcolors, as well as estimates of their variability at each wavelength. Inthe time-averaged DIRBE color-color plots, we find clear segregation ofsemiregulars, Mira variables, carbon stars, OH/IR stars, and red giantswithout circumstellar dust (i.e., V-[12]<5) and with little or novisual variation (ΔV<0.1 mag). The DIRBE 1.25-25 μm colorsbecome progressively redder and the variability in the DIRBE databaseincreases along the oxygen-rich sequence nondusty slightly varying redgiants-->SRb/Lb-->SRa-->Mira-->OH/IR and the carbon-richSRb/Lb-->Mira sequence. This supports previous assertions that theseare evolutionary sequences involving the continued production andejection of dust. The carbon stars are redder than their oxygen-richcounterparts for the same variability type, except in theF12/F25 ratio, where they are bluer. Of the 28sources in the sample not previous noted to be variable, 18 are clearlyvariable in the DIRBE data, with amplitudes of variation of ~0.9 mag at4.9 μm and ~0.6 mag at 12 μm, consistent with them being verydusty Mira-like variables. We also present individual DIRBE light curvesof a few selected stars. The DIRBE light curves of the semiregularvariable L2 Pup are particularly remarkable. The maxima at1.25, 2.2, and 3.5 μm occur 10-20 days before those at 4.9 and 12μm, and, at 4.9 and 12 μm, another maximum is seen between the twonear-infrared maxima.

Technetium and the third dredge up in AGB stars. I. Field stars
We searched for Tc in a sample of long period variables selected bystellar luminosity derived from Hipparcos parallaxes. Tc, as an unstables-process element, is a good indicator for the evolutionary status ofstars on the asymptotic giant branch (AGB). In this paper we study theoccurrence of Tc as a function of luminosity to provide constraints onthe minimum luminosity for the third dredge up as estimated from recentstellar evolution models.A large number of AGB stars above the estimated theoretical limit forthe third dredge up are found not to show Tc. We confirm previousfindings that only a small fraction of the semiregular variables show Tclines in their spectra. Contrary to earlier results by Little et al.(\cite{llmb87}) we find also a significant number of Miras without Tc.The presence and absence of Tc is discussed in relation to the massdistribution of AGB stars. We find that a large fraction of the stars ofour sample must have current masses of less than 1.5 Msun .Combining our findings with stellar evolution scenarios we conclude thatthe fraction of time a star is observed as a SRV or a Mira is dependenton its mass.Partly based on observations collected at the European SouthernObservatory, Paranal, Chile (ESO-Programme 65.L-0317(A)).

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Opacity Data for HCN and HNC from a New Ab Initio Line List
A new extensive ab initio rotation-vibration HCN/HNC line list ispresented. The line list contains rotation-vibration energy levels, linefrequencies, and line strengths for transitions between states withenergy less than 18,000 cm-1 and with J<=60. This linelist greatly improves the quality and range of HCN/HNC data available.It is presently the most extensive and most accurate ab initio HCN/HNCline list in existence. It is hoped that this data set will be used inmodels of C star atmospheres and elsewhere.

Carbon-rich giants in the HR diagram and their luminosity function
The luminosity function (LF) of nearly 300 Galactic carbon giants isderived. Adding BaII giants and various related objects, about 370objects are located in the RGB and AGB portions of the theoretical HRdiagram. As intermediate steps, (1) bolometric corrections arecalibrated against selected intrinsic color indices; (2) the diagram ofphotometric coefficients 1/2 vs. astrometric trueparallaxes varpi are interpreted in terms of ranges of photosphericradii for every photometric group; (3) coefficients CR andCL for bias-free evaluation of mean photospheric radii andmean luminosities are computed. The LF of Galactic carbon giantsexhibits two maxima corresponding to the HC-stars of the thick disk andto the CV-stars of the old thin disk respectively. It is discussed andcompared to those of carbon stars in the Magellanic Clouds and Galacticbulge. The HC-part is similar to the LF of the Galactic bulge,reinforcing the idea that the Bulge and the thick disk are part of thesame dynamical component. The CV-part looks similar to the LF of theLarge Magellanic Cloud (LMC), but the former is wider due to thesubstantial errors on HIPPARCOS parallaxes. The obtained meanluminosities increase with increasing radii and decreasing effectivetemperatures, along the HC-CV sequence of photometric groups, except forHC0, the earliest one. This trend illustrates the RGB- and AGB-tracks oflow- and intermediate-mass stars for a range in metallicities. From acomparison with theoretical tracks in the HR diagram, the initial massesMi range from about 0.8 to 4.0 Msun for carbongiants, with possibly larger masses for a few extreme objects. A largerange of metallicities is likely, from metal-poor HC-stars classified asCH stars on the grounds of their spectra (a spheroidal component), tonear-solar compositions of many CV-stars. Technetium-rich carbon giantsare brighter than the lower limit Mbol =~ -3.6+/- 0.4 andcentered at =~-4.7+0.6-0.9 at about =~(2935+/-200) K or CV3-CV4 in our classification. Much like the resultsof Van Eck et al. (\cite{vaneck98}) for S stars, this confirms theTDU-model of those TP-AGB stars. This is not the case of the HC-stars inthe thick disk, with >~ 3400 K and>~ -3.4. The faint HC1 and HC2-stars( =~ -1.1+0.7-1.0) arefound slightly brighter than the BaII giants ( =~-0.3+/-1.3) on average. Most RCB variables and HdC stars range fromMbol =~ -1 to -4 against -0.2 to -2.4 for those of the threepopulation II Cepheids in the sample. The former stars show the largestluminosities ( <~ -4 at the highest effectivetemperatures (6500-7500 K), close to the Mbol =~ -5 value forthe hot LMC RCB-stars (W Men and HV 5637). A full discussion of theresults is postponed to a companion paper on pulsation modes andpulsation masses of carbon-rich long period variables (LPVs; Paper IV,present issue). This research has made use of the Simbad databaseoperated at CDS, Strasbourg, France. Partially based on data from theESA HIPPARCOS astrometry satellite. Table 2 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/967

The carrier of the ``30'' mu m emission feature in evolved stars. A simple model using magnesium sulfide
We present 2-45 mu m spectra of a large sample of carbon-rich evolvedstars in order to study the ``30'' mu m feature. We find the ``30'' mu mfeature in a wide range of sources: low mass loss carbon stars, extremecarbon-stars, post-AGB objects and planetary nebulae. We extract theprofiles from the sources by using a simple systematic approach to modelthe continuum. We find large variations in the wavelength and width ofthe extracted profiles of the ``30'' mu m feature. We modelled the wholerange of profiles in a simple way by using magnesium sulfide (MgS) dustgrains with a MgS grain temperature different from the continuumtemperature. The systematic change in peak positions can be explained bycooling of MgS grains as the star evolves off the AGB. In severalsources we find that a residual emission excess at ~ 26 mu m can also befitted using MgS grains but with a different grains shape distribution.The profiles of the ``30'' mu m feature in planetary nebulae arenarrower than our simple MgS model predicts. We discuss the possiblereasons for this difference. We find a sample of warm carbon-stars withvery cold MgS grains. We discuss possible causes for this phenomenon. Wefind no evidence for rapid destruction of MgS during the planetarynebula phase and conclude that the MgS may survive to be incorporated inthe ISM. Based on observations obtained with ISO, an ESA project withinstruments funded by ESA Member states (especially the PI countries:France, Germany, The Netherlands and the United Kingdom) with theparticipation of ISAS and NASA. Appendix A (Figs. A.1 and A.2) is onlyavailable in electronic form at http://www.edpsciences.org

CHARM: A Catalog of High Angular Resolution Measurements
The Catalog of High Angular Resolution Measurements (CHARM) includesmost of the measurements obtained by the techniques of lunaroccultations and long-baseline interferometry at visual and infraredwavelengths, which have appeared in the literature or have otherwisebeen made public until mid-2001. A total of 2432 measurements of 1625sources are included, along with extensive auxiliary information. Inparticular, visual and infrared photometry is included for almost allthe sources. This has been partly extracted from currently availablecatalogs, and partly obtained specifically for CHARM. The main aim is toprovide a compilation of sources which could be used as calibrators orfor science verification purposes by the new generation of largeground-based facilities such as the ESO Very Large Interferometer andthe Keck Interferometer. The Catalog is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/386/492, and from theauthors on CD-Rom.

Visual stellar spectroscopy
Almost any telescope can be used in conjunction with a simple starspectroscope to make visual observations of stellar spectra. Indeed,some observations can be made with nothing more sophisticated than areplica transmission grating held between eye and eyepiece. North1 haseven suggested the use of net curtain material placed over the telescopeaperture. Visual studies have no objective scient ific value, but theexercise is nevertheless an instructive and fascinating one.

General Catalog of Galactic Carbon Stars by C. B. Stephenson. Third Edition
The catalog is an updated and revised version of Stephenson's Catalogueof Galactic Cool Carbon Stars (2nd edition). It includes 6891 entries.For each star the following information is given: equatorial (2000.0)and galactic coordinates, blue, visual and infrared magnitudes, spectralclassification, references, designations in the most significantcatalogs and coordinate precision classes. The main catalog issupplemented by remarks containing information for which there was noplace in entries of the main part, as well as some occasional notesabout the peculiarities of specific stars.

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr ( or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

Spectra of carbon-rich asymptotic giant branch stars between 0.5 and 2.5 mu m: Theory meets observation
We present a hydrostatic analysis of five carbon rich stars, BH Cru, TCae, S Cen, RU Pup and Y Hya in the wavelength range between 0.5 and 2.5mu m. All except BH Cru, which is a Mira star, show only modestvariability. We identify the absorption features of the molecules CO, CNand C2. The overall energy distribution, which is verysensitive to the effective temperature in the investigated wavelengthrange, as well as the bands of these molecules put strict limits on thepossible values of effective temperature and C/O. We show that our modelatmospheres and corresponding synthetic spectra are able to reproducethe observed spectra quite accurately from about 0.7 to 2.5 mu m. Thediscrepancies are mainly due to uncertainties in the molecular inputdata. We discuss briefly why the variations of the molecular featuresare small and why dynamic phenomena do not play a very important role inthis wavelength range. We identify colour indices based on commonlyavailable filters and potentially suitable for the empiricaldetermination of fundamental parameters of carbon stars.

The effective temperatures of carbon-rich stars
We evaluate effective temperatures of 390 carbon-rich stars. Theinterstellar extinction on their lines of sights was determined andcircumstellar contributions derived. The intrinsic (dereddened) spectralenergy distributions (SEDs) are classified into 14 photometric groups(HCi, CVj and SCV with i=0,5 and j=1,7). The newscale of effective temperatures proposed here is calibrated on the 54angular diameters (measured on 52 stars) available at present from lunaroccultations and interferometry. The brightness distribution on stellardiscs and its influence on diameter evaluations are discussed. Theeffective temperatures directly deduced from those diameters correlatewith the classification into photometric groups, despite the large errorbars on diameters. The main parameter of our photometric classificationis thus effective temperature. Our photometric < k right >1/2 coefficients are shown to be angular diameters on arelative scale for a given photometric group, (more precisely for agiven effective temperature). The angular diameters are consistent withthe photometric data previously shown to be consistent with the trueparallaxes from HIPPARCOS observations (Knapik, et al. \cite{knapik98},Sect. 6). Provisional effective temperatures, as constrained by asuccessful comparison of dereddened SEDs from observations to modelatmosphere predictions, are in good agreement with the values directlycalculated from the observed angular diameters and with those deducedfrom five selected intrinsic color indices. These three approaches wereused to calibrate a reference angular diameter Phi 0 and theassociated coefficient CT_eff. The effective temperatureproposed for each star is the arithmetic mean of two estimates, one(``bolometric'') from a reference integrated flux F0, theother (``spectral'') from calibrated color indices which arerepresentative of SED shapes. Effective temperatures for about 390carbon stars are provided on this new homogeneous scale, together withvalues for some stars classified with oxygen-type SEDs with a total of438 SEDs (410 stars) studied. Apparent bolometric magnitudes are given.Objects with strong infrared excesses and optically thick circumstellardust shells are discussed separately. The new effective temperaturescale is shown to be compatible and (statistically) consistent with thesample of direct values from the observed angular diameters. Theeffective temperatures are confirmed to be higher than the mean colortemperatures (from 140 to 440 K). They are in good agreement with thepublished estimates from the infrared flux method forTeff>= 3170 K, while an increasing discrepancy is observedtoward lower temperatures. As an illustration of the efficiency of thephotometric classification and effective temperature scale, the C/Oratios and the Merrill-Sanford (M-S) band intensities are investigated.It is shown that the maximum value, mean value and dispersion of C/Oincrease along the photometric CV-sequence, i.e. with decreasingeffective temperature. The M-S bands of SiC2 are shown tohave a transition from ``none'' to ``strong'' at Teff =~(2800+/- 150right ) K. Simultaneously, with decreasing effectivetemperature, the mean C/O ratio increases from 1.04 to 1.36, thetransition in SiC2 strength occurring while 1.07<= C/O<= 1.18. This research has made use of the Simbad database operatedat CDS, Strasbourg, France. Table 10 is only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (}or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/369/178

Models of circumstellar molecular radio line emission. Mass loss rates for a sample of bright carbon stars
Using a detailed radiative transfer analysis, combined with an energybalance equation for the gas, we have performed extensive modelling ofcircumstellar CO radio line emission from a large sample of opticallybright carbon stars, originally observed by Olofsson et al. (ApJS, 87,267). Some new observational results are presented here. We determinesome of the basic parameters that characterize circumstellar envelopes(CSEs), e.g., the stellar mass loss rate, the gas expansion velocity,and the kinetic temperature structure of the gas. Assuming a sphericallysymmetric CSE with a smooth gas density distribution, created by acontinuous mass loss, which expands with a constant velocity we are ableto model reasonably well 61 of our 69 sample stars. The derived massloss rates depend crucially on the assumptions in the circumstellarmodel, of which some can be constrained if enough observational dataexist. Therefore, a reliable mass loss rate determination for anindividual star requires, in addition to a detailed radiative transferanalysis, good observational constraints in the form of multi-lineobservations and radial brightness distributions. In our analysis we usethe results of a model for the photodissociation of circumstellar CO byMamon et al. (1988). This leads to model fits to observed radialbrightness profiles that are, in general, very good, but there are alsoa few cases with clear deviations, which suggest departures from asimple r-2 density law. The derived mass loss rates spanalmost four orders of magnitude, from ~ 5 10-9Msun yr-1 up to ~ 2 10-5Msun yr-1, with the median mass loss rate being ~3 10-7 Msun yr-1. We estimate that themass loss rates are typically accurate to ~ 50% within the adoptedcircumstellar model. The physical conditions prevailing in the CSEs varyconsiderably over such a large range of mass loss rates. Among otherthings, it appears that the dust-to-gas mass ratio and/or the dustproperties change with the mass loss rate. We find that the mass lossrate and the gas expansion velocity are well correlated, and that bothof them clearly depend on the pulsational period and (with largerscatter) the stellar luminosity. Moreover, the mass loss rate correlatesweakly with the stellar effective temperature, in the sense that thecooler stars tend to have higher mass loss rates, but there seems to beno correlation with the stellar C/O-ratio. We conclude that the massloss rate increases with increased regular pulsation and/or luminosity,and that the expansion velocity increases as an effect of increasingmass loss rate (for low mass loss rates) and luminosity. Five, of theremaining eight, sample stars have detached CSEs in the form ofgeometrically thin CO shells. The present mass loss rates and shellmasses of these sources are estimated. Finally, in three cases weencounter problems using our model. For two of these sources there areindications of significant departures from overall spherical symmetry ofthe CSEs. Carbon stars on the AGB are probably important in returningprocessed gas to the ISM. We estimate that carbon stars of the typeconsidered here annually return ~ 0.05 Msun of gas to theGalaxy, but more extreme carbon stars may contribute an order ofmagnitude more. However, as for the total carbon budget of the Galaxy,carbon stars appear to be of only minor importance. Presented in thispaper is observational data collected using the Swedish-ESOsubmillimetre telescope, La Silla, Chile, the 20\,m telescope at OnsalaSpace Observatory, Chalmers Tekniska Högskola, Sweden, and the NRAO12\,m telescope located at Kitt Peak, USA.}

Submit a new article

Related links

  • - No Links Found -
Submit a new link

Member of following groups:

Observation and Astrometry data

Right ascension:23h46m23.50s
Apparent magnitude:5.04
Distance:233.1 parsecs
Proper motion RA:-34.9
Proper motion Dec:-25
B-T magnitude:8.575
V-T magnitude:5.306

Catalogs and designations:
Proper Names   (Edit)
Flamsteed19 Psc
HD 1989HD 223075
TYCHO-2 2000TYC 589-1671-1
USNO-A2.0USNO-A2 0900-20488086
BSC 1991HR 9004
HIPHIP 117245

→ Request more catalogs and designations from VizieR