Home     Baþlangýç     Evrende yaþayabilmek için    
Inhabited Sky
    News@Sky     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Basýn     Giriþ  

NGC 1718


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

Physical parameters of 15 intermediate-age LMC clusters from modelling of HST colour-magnitude diagrams
Aims.We analyzed HST/WFPC2 colour-magnitude diagrams (CMDs) of 15populous Large Magellanic Cloud (LMC) stellar clusters with ages between~0.3 Gyr and ~3 Gyr. These (V, B-V) CMDs are photometrically homogeneousand typically reach V ˜ 22. Accurate and self-consistent physicalparameters (age, metallicity, distance modulus and reddening) wereextracted for each cluster by comparing the observed CMDs with syntheticones. Methods: These determinations involved simultaneous statisticalcomparisons of the main-sequence fiducial line and the red clumpposition, offering objective and robust criteria to determine the bestmodels. The models explored a regular grid in the parameter spacecovered by previous results found in the literature. Control experimentswere used to test our approach and to quantify formal uncertainties. Results: In general, the best models show a satisfactory fit to thedata, constraining well the physical parameters of each cluster. Theage-metallicity relation derived by us presents a lower spread thansimilar results found in the literature for the same clusters. Ourresults are in accordance with the published ages for the oldestclusters, but reveal a possible underestimation of ages by previousauthors for the youngest clusters. Our metallicity results in generalagree with the ones based on spectroscopy of giant stars and with recentworks involving CMD analyses. The derived distance moduli implied by themost reliable solutions, correlate with the reddening values, asexpected from the non-negligible three-dimensional distribution of theclusters within the LMC. Conclusions: .The inferred spatialdistribution for these clusters is roughly aligned with the LMC disk,being also more scattered than recent numerical predictions, indicatingthat they were not formed in the LMC disk. The set of ages andmetallicities homogeneously derived here can be used to calibrateintegrated light studies applied to distant galaxies.

Ca II Triplet Spectroscopy of Large Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Populous Clusters
Using the FORS2 instrument on the Very Large Telescope, we have obtainednear-infrared spectra for more than 200 stars in 28 populous LMCclusters. This cluster sample spans a large range of ages (~1-13 Gyr)and metallicities (-0.3>~[Fe/H]>~-2.0) and has good areal coverageof the LMC disk. The strong absorption lines of the Ca II triplet areused to derive cluster radial velocities and abundances. We determinemean cluster velocities to typically 1.6 km s-1 and meanmetallicities to 0.04 dex (random error). For eight of these clusters,we report the first spectroscopically determined metallicities based onindividual cluster stars, and six of these eight have no publishedradial velocity measurements. Combining our data with archival HubbleSpace Telescope WFPC2 photometry, we find that the newly measuredcluster, NGC 1718, is one of the most metal-poor ([Fe/H]~-0.80)intermediate-age (~2 Gyr) inner disk clusters in the LMC. Similar towhat was found by previous authors, this cluster sample has radialvelocities consistent with that of a single rotating disk system, withno indication that the newly reported clusters exhibit halo kinematics.In addition, our findings confirm previous results that show that theLMC lacks the metallicity gradient typically seen in nonbarred spiralgalaxies, suggesting that the bar is driving the mixing of stellarpopulations in the LMC. However, in contrast to previous work, we findthat the higher metallicity clusters (>~-1.0 dex) in our sample showa very tight distribution (mean [Fe/H]=-0.48, σ=0.09), with notail toward solar metallicities. The cluster distribution is similar towhat has been found for red giant stars in the bar, which indicates thatthe bar and the intermediate-age clusters have similar star formationhistories. This is in good agreement with recent theoretical models thatsuggest the bar and intermediate-age clusters formed as a result of aclose encounter with the SMC ~4 Gyr ago.

A Database of 2MASS Near-Infrared Colors of Magellanic Cloud Star Clusters
The (rest-frame) near-IR domain contains important stellar populationdiagnostics and is often used to estimate masses of galaxies at low, aswell as high, redshifts. However, many stellar population models arestill relatively poorly calibrated in this part of the spectrum. Toallow an improvement of this calibration we present a new database ofintegrated near-IR JHKs magnitudes for 75 star clusters inthe Magellanic Clouds, using the Two Micron All Sky Survey (2MASS). Themajority of the clusters in our sample have robust age and metallicityestimates from color-magnitude diagrams available in the literature, andpopulate a range of ages from 10 Myr to 15 Gyr and a range in [Fe/H]from -2.17 to +0.01 dex. A comparison with matched star clusters in the2MASS Extended Source Catalog (XSC) reveals that the XSC only provides agood fit to the unresolved component of the cluster stellar population.We also compare our results with the often-cited single-channel JHKphotometry of Persson and coworkers and find significant differences,especially for their 30" diameter apertures, up to ~2.5 mag in the Kband, more than 1 mag in J-K, and up to 0.5 mag in H-K. Usingsimulations to center apertures based on maximum light throughput (asperformed by Persson et al.), we show that these differences can beattributed to near-IR-bright cluster stars (e.g., carbon stars) locatedaway from the true center of the star clusters. The wide age andmetallicity coverage of our integrated JHKs photometry sampleconstitute a fundamental data set for testing population synthesis modelpredictions and for direct comparison with near-IR observations ofdistant stellar populations.

Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters
We present a database of structural and dynamical properties for 153spatially resolved star clusters in the Milky Way, the Large and SmallMagellanic Clouds, and the Fornax dwarf spheroidal. This databasecomplements and extends others in the literature, such as those ofHarris and Mackey & Gilmore. Our cluster sample comprises 50 ``youngmassive clusters'' in the LMC and SMC, and 103 old globular clustersbetween the four galaxies. The parameters we list include central andhalf-light-averaged surface brightnesses and mass densities; core andeffective radii; central potentials, concentration parameters, and tidalradii; predicted central velocity dispersions and escape velocities;total luminosities, masses, and binding energies; central phase-spacedensities; half-mass relaxation times; and ``κ-space'' parameters.We use publicly available population-synthesis models to computestellar-population properties (intrinsic B-V colors, reddenings, andV-band mass-to-light ratios) for the same 153 clusters plus another 63globulars in the Milky Way. We also take velocity-dispersionmeasurements from the literature for a subset of 57 (mostly old)clusters to derive dynamical mass-to-light ratios for them, showing thatthese compare very well to the population-synthesis predictions. Thecombined data set is intended to serve as the basis for futureinvestigations of structural correlations and the fundamental plane ofmassive star clusters, including especially comparisons between thesystemic properties of young and old clusters.The structural and dynamical parameters are derived from fitting threedifferent models-the modified isothermal sphere of King; an alternatemodified isothermal sphere based on the ad hoc stellar distributionfunction of Wilson; and asymptotic power-law models withconstant-density cores-to the surface-brightness profile of eachcluster. Surface-brightness data for the LMC, SMC, and Fornax clustersare based in large part on the work of Mackey & Gilmore, but includesignificant supplementary data culled from the literature and importantcorrections to Mackey & Gilmore's V-band magnitude scale. Theprofiles of Galactic globular clusters are taken from Trager et al. Weaddress the question of which model fits each cluster best, finding inthe majority of cases that the Wilson models-which are spatially moreextended than King models but still include a finite, ``tidal'' cutoffin density-fit clusters of any age, in any galaxy, as well as or betterthan King models. Untruncated, asymptotic power laws often fit about aswell as Wilson models but can be significantly worse. We argue that theextended halos known to characterize many Magellanic Cloud clusters maybe examples of the generic envelope structure of self-gravitating starclusters, not just transient features associated strictly with youngage.

The Chemical Properties of Milky Way and M31 Globular Clusters. I. A Comparative Study
A comparative analysis is performed between high-quality integratedspectral indices of 30 M31 globular clusters, 20 Milky Way globularclusters, and a sample of field and cluster elliptical galaxies. We findthat the Lick CN indices in the M31 and Galactic clusters are enhancedrelative to the bulges of the Milky Way, M31, and elliptical spheroids,in agreement with Burstein and coworkers. Although not particularlyevident in the Lick CN indices, the near-UV cyanogen feature(λ3883) is strongly enhanced with respect to the Galacticglobular clusters at metallicities -1.5<[Fe/H]<-0.3. Carbon showssigns of varying among these two groups. For [Fe/H]>-0.8, we observeno systematic differences in the Hδ, Hγ, or Hβ indicesbetween the M31 and Galactic globular clusters, in contrast to previousstudies. The elliptical galaxy sample lies offset from the loci of theglobular clusters in both the cyanogen-[MgFe] and Balmer-line-[MgFe]planes. Six of the M31 clusters appear young and are projected onto theM31 disk. Population synthesis models suggest that these are metal-richclusters with ages 100-800 Myr, metallicities -0.20<=[Fe/H]<=0.35,and masses 0.7-~7.0×104 Msolar. Two otheryoung clusters are Hubble V in NGC 205, observed as a template, and anolder (~3 Gyr) cluster some 7 kpc away from the plane of the disk. Thesix clusters projected onto the disk show signs of rotation similar tothe H I gas in M31, and three clusters exhibit thin disk kinematics,according to Morrison and coworkers. Dynamical mass estimates anddetailed structural parameters are required for these objects todetermine whether they are massive open clusters or globular clusters.If they are the latter, our findings suggest globular clusters may tracethe buildup of galaxy disks. In either case, we conclude that theseclusters are part of a young, metal-rich disk cluster system in M31,possibly as young as 1 Gyr old.

Infrared Surface Brightness Fluctuations of Magellanic Star Clusters
We present surface brightness fluctuations (SBFs) in the near-IR for 191Magellanic star clusters available in the Second Incremental and All SkyData releases of the Two Micron All Sky Survey (2MASS) and compare themwith SBFs of Fornax Cluster galaxies and with predictions from stellarpopulation models as well. We also construct color-magnitude diagrams(CMDs) for these clusters using the 2MASS Point Source Catalog (PSC).Our goals are twofold. The first is to provide an empirical calibrationof near-IR SBFs, given that existing stellar population synthesis modelsare particularly discrepant in the near-IR. Second, whereas mostprevious SBF studies have focused on old, metal-rich populations, thisis the first application to a system with such a wide range of ages(~106 to more than 1010 yr, i.e., 4 orders ofmagnitude), at the same time that the clusters have a very narrow rangeof metallicities (Z~0.0006-0.01, i.e., 1 order of magnitude only). Sincestellar population synthesis models predict a more complex sensitivityof SBFs to metallicity and age in the near-IR than in the optical, thisanalysis offers a unique way of disentangling the effects of age andmetallicity. We find a satisfactory agreement between models and data.We also confirm that near-IR fluctuations and fluctuation colors aremostly driven by age in the Magellanic cluster populations and that inthis respect they constitute a sequence in which the Fornax Clustergalaxies fit adequately. Fluctuations are powered by red supergiantswith high-mass precursors in young populations and by intermediate-massstars populating the asymptotic giant branch in intermediate-agepopulations. For old populations, the trend with age of both fluctuationmagnitudes and colors can be explained straightforwardly by evolution inthe structure and morphology of the red giant branch. Moreover,fluctuation colors display a tendency to redden with age that can befitted by a straight line. For the star clusters only,(H-Ks)=(0.21+/-0.03)log(age)-(1.29+/-0.22) once galaxies areincluded, (H-Ks)=(0.20+/-0.02)log(age)-(1.25+/-0.16).Finally, we use for the first time a Poissonian approach to establishthe error bars of fluctuation measurements, instead of the customaryMonte Carlo simulations.This research has made use of the NASA/ IPAC Infrared Science Archive,which is operated by the Jet Propulsion Laboratory, California Instituteof Technology, under contract with the National Aeronautics and SpaceAdministration.

Surface brightness profiles and structural parameters for 53 rich stellar clusters in the Large Magellanic Cloud
We have compiled a pseudo-snapshot data set of two-colour observationsfrom the Hubble Space Telescope archive for a sample of 53 rich LMCclusters with ages of 106-1010 yr. We presentsurface brightness profiles for the entire sample, and derive structuralparameters for each cluster, including core radii, and luminosity andmass estimates. Because we expect the results presented here to form thebasis for several further projects, we describe in detail the datareduction and surface brightness profile construction processes, andcompare our results with those of previous ground-based studies. Thesurface brightness profiles show a large amount of detail, includingirregularities in the profiles of young clusters (such as bumps, dipsand sharp shoulders), and evidence for both double clusters andpost-core-collapse (PCC) clusters. In particular, we find power-lawprofiles in the inner regions of several candidate PCC clusters, withslopes of approximately -0.7, but showing considerable variation. Weestimate that 20 +/- 7 per cent of the old cluster population of theLarge Magellanic Cloud (LMC) has entered PCC evolution, a similarfraction to that for the Galactic globular cluster system. In addition,we examine the profile of R136 in detail and show that it is probablynot a PCC cluster. We also observe a trend in core radius with age thathas been discovered and discussed in several previous publications bydifferent authors. Our diagram has better resolution, however, andappears to show a bifurcation at several hundred Myr. We argue that thisobserved relationship reflects true physical evolution in LMC clusters,with some experiencing small-scale core expansion owing to mass loss,and others large-scale expansion owing to some unidentifiedcharacteristic or physical process.

Testing stellar population models with star clusters in the Large Magellanic Cloud
We present high signal-to-noise ratio integrated spectra of 24 starclusters in the Large Magellanic Cloud (LMC), obtained using the FLAIRspectrograph at the UK Schmidt telescope. The spectra have been placedon to the Lick/IDS system in order to test the calibration of SimpleStellar Population (SSP) models. We have compared the SSP-predictedmetallicities of the clusters with those from the literature,predominantly taken from the Ca-triplet spectroscopy of Olszewski et al.(1991). We find that there is good agreement between the metallicitiesin the range -2.10 <=[Fe/H]<= 0. However, the Mg2 index(and to a lesser degree Mg b) systematically predict highermetallicities (up to +0.5 dex higher) than . Among thepossible explanations for this are that the LMC clusters possess[α/Fe] > 0. Metallicities are presented for eleven LMC clusterswhich have no previous measurements. We compare SSP ages for theclusters, derived from the Hβ, Hγ and Hδ Lick/IDSindices, with the available literature data, and find good agreement forthe vast majority. This includes six old globular clusters in oursample, which have ages consistent with their HST colour-magnitudediagram (CMD) ages and/or integrated colours. However, two globularclusters, NGC 1754 and NGC 2005, identified as old (~15 Gyr) on thebasis of HST CMDs, have Hβ line-strengths which lead ages that aretoo low (~8 and ~6 Gyr respectively). These findings are inconsistentwith their CMD-derived values at the 3σ level. Comparison betweenthe horizontal branch morphology and the Balmer line strengths of theseclusters suggests that the presence of blue horizontal branch stars hasincreased their Balmer indices by up to ~1.0 Å. We conclude thatthe Lick/IDS indices, used in conjunction with contemporary SSP models,are able to reproduce the ages and metallicities of the LMC clustersreassuringly well. The required extrapolations of the fitting functionsand stellar libraries in the models to lower ages and low metallicitiesdo not lead to serious systematic errors. However, owing to thesignificant contribution of horizontal branch stars to Balmer indices,SSP model ages derived for metal-poor globular clusters are ambiguouswithout a priori knowledge of horizontal branch morphology.

A Large and Homogeneous Sample of CMDs of LMC Stellar Clusters
We present the photometric results of 21 stellar clusters of the LargeMagellanic Cloud. The WFPC2 images were retrieved from the HST archive.Simple stellar populations in a large spread of age are well representedin the sample of color-magnitude diagrams shown here.

Large Magellanic Cloud stellar clusters. I. 21 HST colour magnitude diagrams
We present WFPC2 photometry of 21 stellar clusters of the LargeMagellanic Cloud obtained on images retrieved from the Hubble SpaceTelescope archive. The derived colour magnitude diagrams (CMDs) arepresented and discussed. This database provides a sample of CMDsrepresenting, with reliable statistics, simple stellar populations witha large spread of age. The stars in the core of the clusters are allresolved and measured at least down to the completeness limit; themagnitudes of the main sequence terminations and of the red giant clumpare also evaluated for each cluster, together with the radius at halfmaximum of the star density. Based on observations made with theNASA/ESA Hubble Space Telescope, obtained from the data archive at theSpace Telescope Institute. STScI is operated by the association ofUniversities for Research in Astronomy, Inc. under the NASA contract NAS5-26555. Table 1 is only available in electronic form athttp://www.edpsciences.org

A Revised and Extended Catalog of Magellanic System Clusters, Associations, and Emission Nebulae. II. The Large Magellanic Cloud
A survey of extended objects in the Large Magellanic Cloud was carriedout on the ESO/SERC R and J Sky Survey Atlases, checking entries inprevious catalogs and searching for new objects. The census provided6659 objects including star clusters, emission-free associations, andobjects related to emission nebulae. Each of these classes containsthree subclasses with intermediate properties, which are used to infertotal populations. The survey includes cross identifications amongcatalogs, and we present 3246 new objects. We provide accuratepositions, classification, and homogeneous measurements of sizes andposition angles, as well as information on cluster pairs andhierarchical relation for superimposed objects. This unification andenlargement of catalogs is important for future searches of fainter andsmaller new objects. We discuss the angular and size distributions ofthe objects of the different classes. The angular distributions show twooff-centered systems with different inclinations, suggesting that theLMC disk is warped. The present catalog together with its previouscounterpart for the SMC and the inter-Cloud region provide a totalpopulation of 7847 extended objects in the Magellanic System. Theangular distribution of the ensemble reveals important clues on theinteraction between the LMC and SMC.

The relation between the initial and final masses of stars with different chemical compositions
We present the results of calculations for the relations between theinitial and final masses M_i-M_f of low- and moderate-mass stars forvarious initial heavy-element abundances Z. For Z = 0.02 and Z = 0.001,the resulting differences in the final masses for white dwarfs reach0.1M_solar for initial masses from 1.5 to 4M_solar. These differencesare primarily due to the dependence of the initial masses of thecarbon-oxygen cores of asymptotic giant branch stars on their chemicalcompositions. We study the roles of various assumptions about mass lossof stars in the final stages of their evolution. The population of whitedwarfs is modeled, and their mass distribution is obtained for variousassumptions about the initial chemical composition of the stars.

Faint carbon stars from the evolution of close binaries.
The assumption that faint carbon stars in the Magellanic Clouds are onthe early asymptotic giant branch (E-AGB) evolutionary stage, isexamined using population simulation techniques. It is assumed thatthese stars are formed as a result of the mass transfer in close binarysystems while the primary is a carbon star on the thermally-pulsing AGB(TP-AGB) stage. The populations of carbon stars resulting from bothsingle-star evolution and mass transfer in close binary systems havebeen calculated. For the heavy element abundance by mass Z=0.002, theexpected amount of E-AGB carbon stars is comparable with the amount ofthose in the TP-AGB stage. The theoretically obtained and observedluminosity functions of E-AGB carbon stars are similar. Examplesillustrating the importance of correct identification of star'sevolutionary stage for the interpretation of observations are given. Theignorance of the fact that AGB consists of two stages of the evolutionleads to wrong cluster ages resulting from the luminosities of AGBstars.

Integrated UBV Photometry of 624 Star Clusters and Associations in the Large Magellanic Cloud
We present a catalog of integrated UBV photometry of 504 star clustersand 120 stellar associations in the LMC, part of them still embedded inemitting gas. We study age groups in terms of equivalent SWB typesderived from the (U-B) X (B-V) diagram. The size of the spatialdistributions increases steadily with age (SWB types), whereas adifference of axial ratio exists between the groups younger than 30 Myrand those older, which implies a nearly face-on orientation for theformer and a tilt of ~45^deg^ for the latter groups. Asymmetries arepresent in the spatial distributions, which, together with thenoncoincidence of the centroids for different age groups, suggest thatthe LMC disk was severely perturbed in the past.

High-luminosity carbon stars in the early asymptotic giant branch phase
There are high-luminosity carbon stars in the Large Magellanic Cloud(LMC) whose effective temperatures are well above those of ordinaryN-type stars. To elucidate the evolutionary stage of these stars, thepopulations of carbon stars formed as a result of both single-starevolution and mass transfer in close binary systems have beentheoretically modeled by the method of synthetic evolution. It is shownthat high-luminosity carbon stars in the LMC with effective temperaturesgreater than those of most of the LMC stars are in the early asymptoticgiant branch (AGB) phase, while most of the carbon stars withsignificantly lower effective temperatures are in the phase ofhelium-shell flashes. This conclusion is confirmed by the observation ofcarbon and S-type LMC stars in clusters where these stars are clearlyseparated into two groups according to their effective temperature. Itappears that such stars cannot be present in the Galaxy because of largeheavy-element abundances, intermediate-mass stars in the early AGB phasedo not reach high luminosities.

Radii, structure, and orbits of globular clusters
Galactic globular clusters, that do not have collapsed cores, are foundto exhibit a well defined correlation between luminosity and centralconcentration of light. Available observations tentatively suggest thatglobulars in the Large Cloud, and perhaps in M31 obey similarrelationships. Galactic globular clusters on nearly circular orbits areseen to be systematically larger than other globulars (greater than 99%confidence). Clusters on retrograde orbits are systematically smallerthan other globulars. Globular clusters in the outer halo of the Galaxyand in the halo of the Magellanic Clouds have very large radii. Theobservation that globulars in the Fornax dwarf are smaller than those inthe outer halo of the Galaxy, and that carbon stars are rare in thehalo, suggests that the bulk of outer halo of the Galaxy may not haveformed by the disintegration of dwarf spheroidal galaxies. Implicationsof the present results for ideas on the formation of (baryonic) galactichalos are briefly discussed.

Spectroscopy of giants in LMC clusters. II - Kinematics of the cluster sample
Velocities for 83 star clusters in the LMC are analyzed, based onindividual stellar velocities measured at the Calcium triplet. One-halfof the clusters are objects in the outer parts of the LMC which had noprevious velocity determinations. Published velocities for intermediateand old clusters are shown to have had systematic errors. These newvelocities with various rotation curve analyses of the LMC, and testaspects of the twisted disk model proposed by Freeman et al. (1983).When the transverse motion of the LMC is taken into account, a singlerotating disk solution fits the old and intermediate-aged clusters andother tracers (i.e., there is no need for an additional 'tilted disk'system).

The evolution of carbon stars in the Magellanic Clouds
This study presents JHK photometric data for over 100 field stars in theSMC and for 10 in the Large Cloud together with spectroscopic resultsfor about half of them. In the Small Cloud carbon stars were found athigher temperatures and lower luminosities than previously observed. Thefaintest are below the top of the red giant branch. The medium- andlow-luminosity C stars in the M-C transition zone have a low C2 content.At these luminosities, most of the J-type stars are found close to theC2-poor stars in the HR diagram. Their C2 content is about as high as inthe coolest, most evolved C stars. The present observations of carbonstars in the SMC show that they cover a range in M(bo) from -3 to 5.9mag. The transitions from M to C via S appear to occur in both Clouds ata rather well-defined range in M(bol) for SWB and classes IV and V.

Spectroscopy of giants in LMC clusters. I - Velocities, abundances, and the age-metallicity relation
Velocities and equivalent widths are presented for a large sample of LMCclusters. The calcium abundance is found to be a sensitive abundanceindicator over a very wide range of (Fe/H) between 0.0 and -2.2. Theage-metallicity relation is constructed for the inner and outer parts ofthe LMC. This relationsip can be characterized by a simple one-zoneenrichment model. The abundances for the inner and outer clusters at anage of 2 Gyr are nearly identical, so that little radial abundancegradient is evident in the cluster system.

The cluster system of the Large Magellanic Cloud
A new catalog of clusters in the Large Magellanic Cloud has beenconstructed from searches of the IIIa-J component of the ESO/SERCSouthern Sky Atlas. The catalog contains coordinate and diametermeasurements of 1762 clusters in a 25 deg x 25 deg area of sky centeredon the LMC, but excluding the very crowded 3.5 sq deg region around theBar. The distribution of these clusters appears as two superimposedelliptical systems. The higher density inner system extends over about 8deg; the lower density outer system can be represented by a 13 deg x 10deg disk inclined at 42 deg to the line of sight. There are suggestionsof two weak 'arms' in the latter.

Ultraviolet colors as age indicators for LMC clusters
Empirical correlations are found between log ages and the intrinsicultraviolet colors for 27 LMC clusters. The problems and limitations ofusing these correlations as age indicators for LMC clusters and otherstellar populations are discussed. The correlations are used to estimatethe ages of two LMC clusters of unknown age (NGC 1968 and NGC 1974) andthe nuclei of two nearby blue compact dwarf galaxies (NGC 1705 and NGC5253). For the latter two objects optical- and ultraviolet-based ageestimates are in good agreement.

Core expansion in young star clusters in the Large Magellanic Cloud
The core radii of 18 rich star clusters in the LMC with ages from 10 Myrto 1 Gyr. Data for an additional 17 clusters with ages from 1 Myr to 10Gyr are available in the literature. The combined sample shows that thecore radii increase from about 0 to about 5 pc between about 1 Myr and 1Gyr, and then begin to decrease again. The expansion of the cores isprobably driven by mass loss from evolving stars. Models of clusterevolution show that the rate of increase in core radius is sensitive tothe slope of the initial mass function. The observed core radius-agerelation for the LMC clusters favors an intial mass function with slopeslightly flatter than the Salpeter value.

LMC clusters - Age calibration and age distribution revisited
The empirical age relation for star clusters in the Large MagellanicCloud presented by Elson and Fall (1985) are reexamined using ages basedonly on main-sequence turnoffs. The present sample includes 57 clusters,24 of which have color-magnitude diagrams published since 1985. The newcalibration is very similar to that found previously, and the scatter inthe relation corresponds to uncertainties of about a factor of 2 in age.The age distribution derived from the new calibration does not differsignificantly from that derived in earlier work. It is compared with agedistributions estimated by other authors for different samples ofclusters, and the results are discussed.

The evolution of the Magellanic Clouds. I - The ages of globular clusters
Theoretical and observed maximum luminosities of AGB stars in theMagellanic Cloud clusters are compared in order to obtain cluster ageestimations. The ages of 10 clusters in the SMC and 25 in the LMC areconsidered for the cases of several rates of mass loss by AGB stars. Itis demonstrated that discrepancies between ages derived from AGB peakluminosities and from the Main-Sequence turn off and maximum luminositycan be accounted for by the intensive mass loss during the AGBevolutionary phase.

The continuity of cluster formation in the Large Magellanic Cloud
Four LMC star clusters are examined whose colors suggest ages between 2and 10 Gyr. Three of these, NGC 1754, NGC 1795 and SL 506, have ageswithin the well-populated range from 0.8 to 3 Gyr. No conclusion can bereached about the age of NGC 2005, which is located in the Bar and verycrowded. No cluster has yet been found in the LMC with a main-sequenceturnoff age between 4 and 10 Gyr.

Collapsed cores and the structural parameters of old Large Magellanic Cloud star clusters
New CCD aperture photometry of 10 old massive LMC clusters is presented.These data have been combined with previously published results for fourother old LMC clusters. The clusters were chosen on the basis of aphotometric age index in order to isolate (albeit crudely) the oldestmassive stellar systems in the LMC. The analysis of the surfacephotometry of the clusters in this sample of old objects has revealed:(1) most of the clusters can be satisfactorily fitted to standard,single-mass King profiles; (2) two clusters, NGC 2005 and NGC 2019, donot have surface brightness profiles which can be fitted to King models,and, on the basis of this result and comparisons with 'collapsed'Galactic globular clusters, these two objects appear to be examples ofcollapsed LMC cluster cores; and (3) the most concentrated clusters areall located near the LMC center, whereas only more open clusters arefound in the outer LMC.

Magellanic Cloud globular cluster ages
Comparison of peak luminosities observed for asymptotic giant branch(AGB) stars in Magellanic Cloud globular clusters against theoreticalvalues yields age-estimates for 12 SMC and 22 LMC clusters. Theallowance for intensive mass loss during the AGB evolutionary phasebrings these ages into agreement with those based on the clustercolor-magnitude diagrams. Clusters have developed differently in the twoClouds.

Ages and metallicities of LMC and SMC red clusters through H-beta and G band photometry
Narrow band integrated photometry of the H-beta and G band absorptionfeatures for 41 LMC and 10 SMC red star clusters is presented. Anage-metallicity calibration is provided for the color-color diagram. SWBtypes between IV and VII are derived for 23 unclassified clusters, andtheir distribution in the age versus metallicity plane is discussed. Astudy of chemical evolution of the Magellanic Clouds has shown that theLMC presents a steeper chemical enrichment slope. An intrinsicmetallicity dispersion is found in the LMC chemical evolution,indicating that the gas has been inhomogeneous at any time, with localenrichment prevailing over a global one. One zone model describes theevolution of both clouds, the efficiency of star cluster formation beinglarger in the LMC. The LMC presents a burst of star cluster formation att = 4.5 x 10 to the 9th yr. New B - V data for fainter SMC clusters arealso presented, providing an essentially complete color histogram forclusters with globular cluster appearance.

Age calibration and age distribution for rich star clusters in the Large Magellanic Cloud
An empirical relation is presented for estimating the ages of rich starclusters in the Large Magellanic Cloud (LMC), to within a factor ofabout 2, from their integrated UBV colors. The calibration is based onpublished ages for 58 LMC clusters derived from main-sequencephotometry, integrated spectra, or the extent of the asymptotic giantbranches. Using stellar population models, a sample of LMC clusters moremassive than about 10,000 solar masses is isolated, which is correctedfor incompleteness as a function of magnitude. An unbiased agedistribution for three clusters is then determined. The number ofclusters decreases with increasing age in a manner that is qualitativelysimilar to the age distribution for the open clusters in our Galaxy. TheLMC age distribution is, however, flatter, and the median age of theclusters is greater. If the formation rate has been approximatelyconstant over the history of the two galaxies, then the age distributionobtained here implies that clusters are disrupted more slowly in theLMC. The results contain no evidence for bursts in the formation ofclusters, although fluctuations on small time scales and slow variationsover the lifetime of the LMC cannot be ruled out.

M and S stars in LMC globular clusters
Spectroscopic observations of 16 oxygen-rich AGB stars in LMC clustersreveal 12 M and four S stars, all radial velocity members of the LMC.Twenty S stars are known in the intermediate age clusters of the LMC.These data, together with other information on the clusters, confirm anearlier finding that the M-S and S-C transitions occur at higherluminosity in the younger clusters. The correlation between age andmetal abundance of LMC clusters creates ambiguity but there is evidencethat metal abundance is important. The lifetime of the S star stage ofevolution is a substantial fraction of the life of a carbon staralthough a prediction that S stars will be more common relative to Cstars at higher metal content is in accordance with observation. Theabsence of pure S, SC or CS stars may be in conflict with the currentcalibration of the S and C spectral types in terms of C/O. Four old openclusters in the Galaxy were searched for S stars without success.

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Kilicbaligi
Sað Açýklýk:04h52m25.00s
Yükselim:-67°03'06.0"
Görünürdeki Parlaklýk:99.9

Kataloglar ve belirtme:
Özgün isimleri   (Edit)
NGC 2000.0NGC 1718

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin